November 20, 2021
グラフェンアルミニウムイオン電池技術に関する世界特許出願を申請
https://graphenemg.com/patent-battery-technology/
「GMG のパートナーであるUniQuest Pty Limited (「UniQuest」) は、2020 年 11 月 25 日の最初の出願に続き、特許法人条約 (「PCT」) に基づいて G+AI バッテリーの世界特許出願を提出しました。この特許出願は重要な特許出願です。これは、GMG が開発および展開する権利を有する G+AI バッテリー技術の知的財産 (「IP」) および世界的な商業化権を確保するためのステップです。」
「2021 年 4 月 22 日に報告されたとおり、GMG はクイーンズランド大学 (または「UQ」) と G+AI バッテリー技術を開発しており、2021 年 2 月 26 日付で UniQuest Pty Limited とライセンス契約 (「ライセンス契約」) を締結しました ( 「UniQuest」)、クイーンズランド大学が行った研究成果を商業化する団体。特定の国で特許が存続する場合、ライセンス契約の期間は 20 年以上です。ライセンス契約の条件に基づき、GMG は発生した特定の特許費用を支払い、G+AI バッテリーの販売に対して最低ロイヤルティを Uniquest に支払います。」
「2021年3月31日付のGMGの目論見書で開示されているように、GMGとクイーンズランド大学は2021年2月26日付で研究協定(以下「研究協定」)を締結し、これに従って両当事者はオーストラリア政府からの財政支援を受けて協力して取り組んでいる。研究開発を進め、最終的にはG+AIバッテリーの商品化を目指します。」
「
ユニクエストについて
UniQuest はクイーンズランド大学 (UQ) の商業化会社です。UniQuest は、産業界と UQ の研究者との橋渡し役として、UQ の研究者と提携して UQ の知的財産を商品化し、社会的および経済的影響を生み出します。1984 年に設立された UniQuest の商業化活動により、UQ はオーストラリアにおける学術研究翻訳の最前線に立っています。
GMGについて
GMG は、TSX ベンチャー取引所 (TSXV:GMG) に上場されているオーストラリアに本拠を置くクリーンテクノロジー企業で、黒鉛を採掘する代わりにメタン (天然ガス) を分解してグラフェンと水素を生産しています。GMG は、同社独自のプロセスを使用することにより、高品質、低コスト、拡張性があり、「調整可能」で汚染物質のない/低汚染のグラフェンを生産することができ、多くの世界規模の地球に優しい/クリーンテクノロジーの用途においてコストと環境の改善を実証することができます。当社は、このグラフェンやその他の低投入コストのグラフェン源を使用して、大規模なエネルギー効率およびエネルギー貯蔵市場をターゲットとした付加価値のある製品の開発を行っています。
」
---------------------------------------------------------------------------------------------------------------------------------------------
WIPOで特許検索をかけてみると,
出願人がGraphene Manufacturing Group Ltd.では,以下の1件が出てきた。
WO2023087067 - IMPROVED BATTERY
Title
Abstract
Claims
[EN ]
The claims defining the invention are as follows:
1 . A method for producing a battery part, the method including:
forming graphene nano-particles using carbon inclusive gas;
combining the graphene nano-particles with one or more dispersing agents to form a combination; and
mixing the combination with a battery part liquid.
2. A method as claimed in claim 1 , wherein the graphene nano-particles are formed using one or more carbon inclusive precursors including any one or more of: graphite, carbon black, activated carbon and hard and soft carbons; Graphene from Gas, Graphene from Graphite, Graphene Oxide from Graphite, Graphite, Modified carbon, and Carbon Black.
3. A method for producing a battery part as claimed in claim 2, wherein the carbon source of the carbon inclusive precursors include any one or more of: graphite, gas and liquids including carbon, and biosolid feedstock.
4. A method as claimed in claim 1 , wherein the combination includes less than 0.01 %, 0.05%, 0.10%, 0.5%, 1 %, 2%, 3%, 10%, 50% or 80% by weight of graphene nano-particles.
5. A method as claimed in claim 1 , wherein the graphene nano-particles are in the form of particles or platelets or flakes in the range of 2nm to tens of microns.
6. A method as claimed in claim 1 , wherein the graphene nano-particles are in the form of flakes added to said dispersing agents.
7. A method as claimed in claim 1 , wherein the mixing involves mixing with a high shear mixer, with shear rates ranging from a minimum of 1/10,000 per second, to disperse and distribute the graphene nano-particles.
8. A method as claimed in claim 7, wherein mixing times range from 9 minutes to 72 hours, dependent upon varying dispersion and distribution combinations.
7. A method as claimed in claim 1 , wherein the battery part liquid includes any one or more of a metal and electrolyte mixture.
8. A method as claimed in claim 1 , wherein the dispersing agents include Hypermer™ manufactured by Croda and/or a hydrophilic non-ionic surfactant of the more general class of copolymers known as poloxamers.
9. A method as claimed in claim 1 , wherein the battery part includes an anode made from aluminium with a purity level of 97% to 99.99% and variable thickness gauge.
10. A method as claimed in claim 1 , wherein the battery part includes a cathode, preferably including a mixture of carbon, binder and solvent.
11. A method as claimed in claim 10, wherein the binder includes a Carboxymethyl cellulose (CMC), polyacrylic acid (PAA) Polyvinylidene fluoride or polyvinylidene difluoride (PVDF), Polytetrafluoroethylene, Polystyrene, and/or a sulfonated tetrafluoroethylene based fluoropolymer-copolymer namely Nation up 5-8% in water (h2O).
12. A method as claimed in claim 10, wherein the solvent includes N-Methyl-2-pyrrolidone; Water; Dihydrolevoglucosenone; a Hydrocarbon solvent and/or Surfactant emulsion.
13. A method as claimed in claim 10, wherein material used to make the cathode includes carbon cloth, carbon paper molybdenum foil, carbon coated aluminum foils, and/or titanium foil.
14. A method as claimed in claim 10, wherein the battery cathode is a disc like structure and/or resembles a single layer which is folded.
15. A method as claimed in claim 1 , wherein the battery part includes an electrolyte
16. A method as claimed in claim 15, wherein the electrolyte is in the form of 1 -ethyl-3-methylimidazolium chloride-aluminum chloride; ([EMIm]CI-AICI3, 1 :1 .3 by mole; 1 :1 .7 by mole; and 1 :2 by mole); Urea-AICI3 (1 :1 .3 by mole and 1 :1 .7 by mole; and 1 :2 by mole); Urea-AICI3; Aluminum trifluoromethanesulfonate1 -ethyl-3-methylimidazolium
chloride-aluminum chloride; ([EMIm]CI-AICI3, 1 :1.3 by mole); Urea-AICI3; Aluminum trifluoromethanesulfonate; (AI[TfO]3)/N-methylacetamide/urea; AICI3/acetamide;
AICI3/N-methylurea; AICI3/1 ,3-dimethylurea; Bistriflimide, systematically known as bis(trifluoromethane) sulfonylimide (or 'imidate') and colloquially as TFSI; and/or T rifluoromethanesulfonate.
17. A method as claimed in claim 15, wherein the source of the electrolyte chemistry includes Aluminium chloride powder; Recycled Aluminium powder; 1 -ethyl-3-methylimidazolium chloride ionic liquid; and/or Urea.
18. A method as claimed in claim 1 , wherein a battery including the battery part has an energy density of greater than 50 Wh/Kg up to 500 Wh/kg and/or a volumetric energy density ranging from 20 Wh/L up to 1000 Wh/L.
19. A method as claimed in claim 18, wherein the battery includes two cathodes and two anodes assembled in series to reach a nominal voltage of 3.4 to 3.8 volts.
20. A method as claimed in claim 18, wherein a separator is used to separate the anodes from cathodes to prevent short circuiting.
21 . A method as claimed in claim 20, wherein the separator includes PVDF and PTFE; Glass fibre; Polytetrafluoroethylene or any synthetic fluoropolymer of tetrafluoroethylene; Cellulose based membranes; nation based membranes and/or Poly acrylonitrile materials.
22. A battery including multiple cathodes, separators and anodes in an assembled battery cell to linearly increase the voltage and also increase the cell capacity.
上記パテント関連に関しては,別記事で検証する予定。
-------GMGのグラフェンーアルミニウムイオンバッテリー最新公開情報----------
https://graphenemg.com/category/aluminium-ion-battery/